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Abstract. Polarization of solar lines arises due to illumination of radiating atom by
anisotropic (limb darkened/brightened) radiation. Modelling the polarized spectra of the
Sun and stars requires solution of the line radiative transfer problem in which the relevant
polarizing physical mechanisms are incorporated. The purpose of this paper is to describe
in what different ways the polarization state of the radiation ‘complicates’ the numerical
methods originally designed for scalar radiative transfer. We present several interesting sit-
uations involving the solution of polarized line transfer to prove our point. They are (i)
Comparison of the polarized approximate lambda iteration (PALI) methods with new ap-
proaches like Bi-conjugate gradient method that is faster, (ii) Polarized Hanle scattering line
radiative transfer in random magnetic fields, (iii) Difficulties encountered in incorporating
polarized partial frequency redistribution (PRD) matrices in line radiative transfer codes,
(iv) Technical difficulties encountered in handling polarized specific intensity vector, some
components of which are sign changing, (v) Proving that scattering polarization is indeed a
boundary layer phenomenon. We provide credible benchmarks in each of the above studies.
We show that any new numerical methods can be tested in the best possible way, when it is
extended to include polarization state of the radiation field in line scattering.
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diative transfer – methods: techniques

1. Introduction

The radiative transfer equation (RTE) forms
the basis of all efforts aimed at modelling spec-
tral lines. In the recent three decades fast nu-
merical methods have been developed to solve
this equation. The study of polarization in lines
provides more deeper insights because it is
a ‘measure of the anisotropy’ prevailing in
the atmosphere. The most common sources of
anisotropy are, for example, the limb darken-
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ing and the external magnetic fields. We con-
fine ourselves only to these two sources.

We show that inclusion of polarization tests
the genuine speed and accuracy of any method
in a stringent manner with respect to the corre-
sponding method for the scalar intensity alone.
We validate this assertion by taking several
benchmarks.

The formulation of the standard prob-
lem of non-magnetic polarized RTE was
due to Chandrasekhar (1950). The work of
Stenflo & Stenholm (1976) represents one of
the earliest papers on this topic. They used
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a ‘core-saturation method’ to solve the RTE.
Dumont et al. (1977), Rees & Saliba (1982),
and Faurobert (1987), used the standard
‘Feautrier method’ to solve this vector trans-
fer equation. Nagendra (1986, 1988) used the
discrete space method, based on differential
form of the transfer equation. Rees (1978),
and McKenna (1984) used integral equation
approaches for the solution. All these meth-
ods can be grouped together as exact meth-
ods, where the solution was obtained ‘non-
iteratively’. Another common characteristic of
these older methods is their demand for large
computer memory and CPU time.

The work on modern iterative methods
of solving RTE began with the seminal
papers by Cannon (1973), and Olson et al.
(1986), who used the concept of ‘opera-
tor perturbation’ for the spatial interaction
matrix (the Λ̂-matrix). These methods are
popularly known as ‘Approximate Lambda
Iteration (ALI)’ methods. The extension of
ALI methods to polarization (non-magnetic)
was by Faurobert-Scholl et al. (1997), and
Trujillo Bueno & Manso Sainz (1999). In the
last decade these so called PALI (P for
polarized) methods have been applied to a
variety of practical problems (see the re-
views by Nagendra 2003; Trujillo Bueno 2003;
Nagendra & Sampoorna 2009).

We further describe the methods that
are devised to handle polarized RTE prob-
lems in weak magnetic fields. Historically,
Chandrasekhar (1950) formulated a Fourier
expansion technique to convert the 1D
non-axisymmetric polarized RTE into an
axisymmetric one (monochromatic case).
This technique was later generalized by
Faurobert-Scholl (1991), Nagendra et al.
(1998), for the problem of line transfer,
who applied it to the specific case of Hanle
scattering.

2. Polarized line transfer in planar
geometry

We consider the simple case of a two-level
atom model.

2.1. Governing Equations

We start from the standard form of the RTE for
the pure line case, in the presence of a weak
magnetic field :

µ
∂I(τ, x,Ω)

∂τ
=φ(x) [I(τ, x,Ω) − S(τ, x,Ω)] , (1)

where I = (I,Q,U)T is the Stokes vector.
In this case we do not need to consider the
Stokes V parameter, since it gets completely
decoupled from the other three parameters
(Landi Degl’Innocenti & Landolfi 2004). The
corresponding Stokes source vector is given by

S(τ, x,Ω) = G(τ) +

∫
dx′

∫
dΩ′

4 π
g(x, x′)

× P̂(Ω,Ω′, B)I(τ, x′,Ω′). (2)

Here G(τ) is the thermal source, g(x, x′) =
R(x, x′)/φ(x) with R(x, x′) being the frequency
redistribution function (neglecting polarization
effects), and φ(x) being the Voigt profile func-
tion for the reduced frequency x. The polariza-
tion information is fully contained in the Hanle
phase matrix P̂(Ω,Ω′, B) (line scattering in the
presence of the weak magnetic fields). dτ =
−kL dz with kL being the frequency averaged
absorption coefficient. The component form of
Eq. (1) is

µ
∂Ii

∂τ
= φ(x) [Ii(τ, x,Ω) − S i(τ, x,Ω)] , (3)

where Ii{i = 0, 1, 2} = (I,Q,U) and S i{i =
0, 1, 2} = (S I , S Q, S U). The source vector com-
ponents can be expressed as

S i(τ, x,Ω) = Gi(τ) +
∑

KQ

T K
Q (i,Ω) (4)

×
∑

Q′
NK

QQ′(B)
∫

g(x, x′)(JK
Q′)
∗(τ, x′)dx′,

with the mean irreducible tensor

JK
Q(τ, x) =

3∑

j=0

∫
T K

Q ( j,Ω)I j(τ, x,Ω)
dΩ

4π
. (5)
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2.2. Decomposition in the irreducible
basis

The Stokes intensity and source vectors can
be decomposed using the irreducible spheri-
cal tensors defined in Frisch (2007, hereafter
HF07, see also Landi Degl’Innocenti 1984).
The advantage of this decomposition is that in
the so called ‘reduced space’, Stokes source
vector becomes independent of the angles (Ω),
and the specific intensity I becomes indepen-
dent of the azimuthal angle χ of the radiation
field. These decompositions are

Gi(τ) =
∑

KQ

T K
Q (i,Ω)GK

Q(τ), (6)

which is the thermal part of the source vector,
with the only non-zero component G0

0(τ),

S i(τ, x,Ω) =
∑

KQ

T K
Q (i,Ω)S K

Q(τ, x), (7)

which is the scattering part of the line source
vector, and

Ii(τ, x,Ω) =
∑

KQ

T K
Q (i,Ω)IK

Q (τ, x, µ), (8)

which is the corresponding intensity vector.
The IK

Q and S K
Q obey a transfer equation:

µ
∂IK

Q (τ, x, µ)

∂τ
=φ(x)

[
IK

Q (τ, x, µ) − S K
Q(τ, x)

]
, (9)

where

S K
Q(τ, x) = GK

Q(τ) +
∑

Q′
NK

QQ′ (B)

×
∫

g(x, x′)(JK
Q′)
∗(τ, x′)dx′. (10)

Substituting Eq. (8) in Eq. (5) we obtain

(JK
Q)∗(τ, x) =

3∑

j=0

∑

K′Q′

∫
(T K

Q )∗( j,Ω′)

×T K′
Q′ ( j,Ω′) IK′

Q′ (τ, x, µ
′)

dΩ′

4π
. (11)

The formal solution of Eq. (9) is:

IK
Q (τ, x, µ) = IK

Q (0, x, µ) e−τφ(x)/µ (12)

−
∫ τ

0
e−(τ′−τ)φ(x)/µS K

Q(τ′, x)
φ(x)
µ

dτ′, µ < 0,

and

IK
Q (τ, x, µ) = IK

Q (T, x, µ) e−(T−τ)φ(x)/µ (13)

+

∫ T

τ

e−(τ′−τ)φ(x)/µS K
Q(τ′, x)

φ(x)
µ

dτ′, µ > 0.

The expression for the Hanle phase matrix
P̂(Ω,Ω′, B) in terms of T K

Q is given by

P̂i j(Ω,Ω′, B) =
∑

KQ

T K
Q (i,Ω)

×
∑

Q′
NK

QQ′(B)(−1)Q ′T K
−Q′( j,Ω′). (14)

The magnetic kernel NK
QQ′(B) is given by

NK
QQ′(B) = exp [i(Q′ − Q)χB]

×
∑

Q′′
dK

QQ′′(ϑB)dK
Q′′Q′(−ϑB)XKQ′′(B), (15)

where (ϑB, χB) is the field orientation with re-
spect to the atmospheric normal, and dJ

MM′ are
reduced rotation matrices which are listed in
Landi Degl’Innocenti & Landolfi (2004). See
HF07 for details on XKQ(B). The governing
equations given in this section are fairly gen-
eral, in the sense that they can be used either for
complete redistribution (CRD), or scalar par-
tial redistribution (PRD) functions of Hummer
(1962). However, polarized line transfer actu-
ally requires the use of redistribution matrices,
which contains inextricable coupling between
polarization, frequency, and directions of in-
coming and outgoing photons. Difficulties en-
countered in handling such problems of PRD
are deferred to section 5. For discussions con-
cerning the numerical methods we assume
CRD, that is R(x, x′) = φ(x)φ(x′), for which
the source vector S(τ, x, n) or S K

Q(τ, x) becomes
frequency independent.

3. Preconditioned BiCG method for
polarized line transfer

Here we describe the polarized Preconditioned
Bi-Conjugate Gradient (Pre-BiCG) method.
This is a method proposed recently by
Paletou & Anterrieu (2009) for the unpolar-
ized transfer in a planar medium. An exten-
sion of that work to the case of unpolarized
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Fig. 1. Dependence of the Maximum Relative Change en on the iterative progress for different
methods. Panels (a), (b), and (c) represent models with low, medium and high spatial resolution
respectively. The model parameters are (T , a, ε, Bν)= (2 × 103, 10−3, 10−4, 1). The convergence
criteria is chosen as ω̄ = 10−8. The SOR parameter ω =1.5. The figures show clearly that Jacobi
method has the smallest convergence rate, which progressively increases for GS and SOR meth-
ods. Pre-BiCG method generally has the largest convergence rate compared to the other three.

transfer in a spherical medium is described in
Anusha et al. (2009) for the unpolarized case.
The extension to polarization is straight for-
ward. Therefore we do not elaborate. Here
we present the convergence behaviour of this
method.
Test for Convergence: Let

eS = max
τ
{| δS/S |}, (16)

denote the maximum relative change (MRC)
on the the first component of source vector, and

eP = max
x,θ,φ
{| δP/P} | (τ = 0), (17)

with P =

√
(Q/I)2 + (U/I)2, (18)

define MRC on surface polarization. We
terminate the iterative sequence when
en =max[eS, eP] ≤ ω̄ is satisfied, where n is
the iteration number and ω̄ is the convergence
criteria.

Figure 1 shows a plot of en for differ-
ent methods. We can take en as a measure
of the convergence rate. In the following we
discuss how different methods respond to the
grid refinement. It is a well known fact with
the ALI methods, that the convergence rate is
small when the resolution of the depth grid is
very high. In contrast they have a high con-
vergence rate in low resolution grids. On the

other hand the Pre-BiCG method has higher
convergence rate even in a high resolution
grid. Figure 1a shows en for different methods
when a low resolution spatial grid is used (10
points per decade, in the logarithmic scale for
τ grid, in short 10 pts/D). The Jacobi method
has the lowest convergence rate. In compari-
son, Gauss-Seidel (GS) method has a conver-
gence rate which is twice that of Jacobi. The
Successive Over Relaxation (SOR) method has
a rate that is even better than that of GS.
However Pre-BiCG has the highest conver-
gence rate. Figure 1b and 1c are shown for
intermediate (20 pts/D) and high (30 pts/D)
grid resolutions. The essential point to note is
that, as the grid resolution increases, the con-
vergence rate decreases drastically and mono-
tonically for the Jacobi and the GS methods. It
is not so drastic for the SOR method. The Pre-
BiCG method is relatively less sensitive to the
grid resolution.

4. Polarized line transfer in random
magnetic fields

Here we consider the problem of scattering in
random magnetic fields. The theory of Hanle
scattering in random fields was recently devel-
oped by Frisch (2006). A PALI method to solve
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the concerned transfer equation is developed in
Frisch et al. (2009). This method is briefly de-
scribed below.

In the presence of a random field of finite
correlation length, Eq. (9) becomes stochastic.
To solve such an equation it is necessary to rep-
resent the randomness of the field.

The random magnetic field vector B is rep-
resented by a Kubo–Anderson process (KAP).
It is a stationary, discontinuous, piecewise con-
stant, Markov process. A KAP is character-
ized by a correlation length 1/ν (where ν is
the number of jumps per unit optical depth)
and a probability density function (PDF) P(B).
The choice of this process allows one to write
a transfer equation for a mean radiation field,
still conditioned by the value of B (Frisch
2006; see also Frisch et al. 2009).

In a random magnetic field the transfer
equation for IK

Q is

µ
∂IK

Q (τ, x, µ|B)

∂τ
= φ(x)

[
IK

Q (τ, x, µ|B)

−S K
Q(τ|B)

]
+ ν

[
IK

Q (τ, x, µ|B)

−
∫

IK
Q (τ, x, µ|B′)P(B′) d3B′

]
. (19)

IK
Q is now called ‘conditional mean Stokes vec-

tor component’ (see Frisch 2006, for its defi-
nition). Equation (19) differs from the transfer
equation (9) for deterministic fields, through
the last two terms (which take care of stochas-
tic nature of the problem). The mean condi-
tional source vector S K

Q(τ|B) is defined by

S K
Q(τ|B) = GK

Q(τ) +
∑

Q′
NK

QQ′ (B)

×
∫ +∞

−∞
φ(x′) (JK

Q′)
∗(τ, x′|B) dx′, (20)

where JK
Q(τ, x|B) is given by Eq. (5), with I j

replaced by I j(τ, x,Ω|B) which is related to
IK

Q (τ, x, µ|B) through Eq. (8). Notice that in a
random field S K

Q explicitly depends on B, in
much the same way as S K

Q depends on fre-
quency x in PRD problems. Hence the standard

numerical methods devised for PRD line trans-
fer can be extended by simple analogy. We de-
scribe the essential steps of this method below.

The conditional source vectorS(τ|B) satis-
fies the integral equation

S(τ|B) = G(τ) + N̂(B)Λ̂[S], (21)

where N̂(B) is the 6×6 matrix whose elements
are given by Eq. (15) and Λ̂[S] and L̂ are

Λ̂[S] =

∫ T

0
dτ′

{
L̂(τ − τ′; ν)S(τ′|B)

+[L̂(τ − τ′; 0) − L̂(τ − τ′; ν)]
×

∫
P(B′)S(τ′|B′)d3B′

}
, (22)

L̂(τ; ν) =

∫ +∞

−∞

∫ 1

0

1
2µ

Ψ̂(µ) φ2(x)

× exp[−|τ|(ϕ(x) + ν)/µ] dµ dx, (23)

where Ψ̂(µ) describes the angular dependence
coming from the Hanle phase matrix.

Following a standard approach we intro-
duce an approximate Λ̂ operator denoted by
Λ̂∗. For simplicity we consider the Jacobi
scheme with Λ̂∗ kept as the diagonal of non-
local interaction operator Λ̂. Main steps of this
iteration scheme are :

[Ê − N̂(B)Λ̂∗]δS(n)(τ|B)
= G(τ) + N̂(B)J (n)(τ|B) − S(n)(τ|B), (24)

where Ê is the unit matrix and J (τ|B) is

J (τ|B) =

∫ +∞

−∞

1
2

∫ +1

−1
φ(x) Ψ̂(µ)

×I (τ, x, µ|B) dµ dx. (25)

The source vector corrections are given by

δS(n)(τ|B) = S(n+1)(τ|B) − S(n)(τ|B); (26)
J (n)(τ|B) = Λ̂[S(n)].

The superscript (n) refers to the iteration step.
Knowing S(n)(τ|B), we calculate J (n)(τ|B) us-
ing a formal solution of Eq. (19). A short char-
acteristic method is used as a formal solver.

At each depth point τq, we have a system of
linear equations for δS(n)(τq|B) (see Eq. (24)).
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The dimension of this system is NB × NC , with
NC = 6 and NB the number of grid points
needed to describe the PDF. If NB, NϑB and NχB

are the number of grid points corresponding to
strength B, inclination ϑB and azimuth χB, then
NB = NB × NϑB × NχB . The linear system of
equations for δS(n)

j at each depth point τq is:

∑

j

Âi j(τq)δS(n)
j (τq) = r(n)

i (τq), (27)

where now i, j = 1, . . . ,NB. δS(n)
j and r(n)

i
have the dimension NC . We use the nota-
tion δS(n)

j (τq) = δS(n)(τq|B j) with B j the jth

discretized value of B. Similarly, r(n)
i (τq) =

r(n)(τq|Bi). Each element Âi j is an NC × NC
block given by

Âi j(τq) = δi jÊ − δi jN̂iL̂∗(τq; ν) (28)

−N̂i[L̂∗(τq; 0) − L̂∗(τq; ν)]$ j.

The $ j are weights for the integration over
magnetic field PDF. The elements Âi j have to
be computed only once, as they do not change
during the iteration cycle.

Our numerical experiments showed that,
the emergent mean intensity vector (I, Q) are
essentially independent of the magnetic field
correlation length for optically thin (T � 1)
and optically thick (T ≥ 103) lines. For inter-
mediate value of T (10 − 100), some sensitiv-
ity to the correlation length is exhibited. Thus
in most cases of astrophysical interest, micro-
turbulence can be safely assumed.

The mean Stokes profiles are however very
sensitive to the choice of the PDF. Examples
of various field strength distributions, P(B/B0)
with B0 the mean field, used in theoretical
modelling of solar observations are shown
in Fig. 2a. The corresponding mean Stokes
〈Q〉/〈I〉 for micro-turbulent limit are shown in
Fig. 2b. The angular distribution of B is as-
sumed to be isotropic. We observe that the
polarization strongly depends on the choice
of P(B/B0). The sensitivity of polarization in-
creases when PDF with large possibility for
occurrence of weak fields prevail in the atmo-
sphere (PDFs that are peaked at B ' 0).

5. Polarized line transfer with PRD

In the previous sections we assumed CRD ap-
proximation for line scattering. However a cor-
rect treatment (especially of resonance lines)
requires the use of PRD. While in the scalar
case it is not too difficult to handle PRD, the
complexity escalates when polarized line for-
mation is considered because PRD functions
become 4 × 4 redistribution matrices (RMs).

In the past a “hybrid approximation” was
used, which simply involves writing the RM
as a product of scalar PRD function and the
phase matrix that describes polarization. This
has proved quite practical in the past 3 decades.
See the reviews by Nagendra (2003, see also
Nagendra & Sampoorna 2009) for a histori-
cal account. Note that scalar PRD function in
general depends on frequencies and angles of
incoming and outgoing photons, thereby mak-
ing the source vectors depend not only on fre-
quency but also on the outgoing angles (θ, ϕ).
To overcome the (θ, ϕ) dependence it is a stan-
dard practice to angle average the scalar PRD
functions explicitly and use them in the scat-
tering integral (see Mihalas 1978).

The hybrid approximation worked rea-
sonably well for non-magnetic resonance
scattering. Scattering in the presence of a
magnetic field (Hanle effect) calls for ex-
plicit treatment of RMs. Such RMs for ar-
bitrary strength fields are derived recently
(Bommier 1997; Bommier & Stenflo 1999;
Sampoorna et al. 2007a,b), which were subse-
quently used in line transfer (Sampoorna et al.
2008). The difficulty in performing these com-
putations using the full RM convinced us of the
necessity to use its ‘simplified forms’ in practi-
cal work. One such simplification was already
proposed by Bommier (1997), who derived
weak field analogue of Hanle scattering RMs
(both angle-averaged and angle-dependent ver-
sions). Such simplified RMs were used by
Nagendra et al. (2002) in line transfer. High
speed PALI method was devised to handle
angle-averaged version of RMs (Fluri et al.
2003). The analysis of polarimetric data may
require the use of angle-dependent RMs (exact
treatment of PRD) in the line transfer compu-
tations, for which iterative methods are not yet
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Fig. 2. Panel (a) : various P(B/B0) as a function of (B/B0). Panel (b) : the emergent 〈Q〉/〈I〉
profiles for µ = 0.05, and different choice of PDFs.

Fig. 3. Comparison of approximate treatment with the exact treatment of angle-averaged PRD.
Model parameter : (T, a, ε, Bν) = (2 × 104, 10−3, 10−3, 1). Field parameter : (γB, ϑB, χB) =
(1, 30◦, 0◦). Here γB is the Hanle efficiency factor given by γB = eguB/(2mcAul) in standard
notations. Different line types : solid line (simple 1D cut-off approximation), dotted line (2D
domain based cut-off approximation), and dashed line (exact treatment).

developed. Thus we are left with the dilemma
of “weather to keep the exact treatment of line
scattering through the use of angle-dependent
RMs, or use faster iterative methods which are
designed only to handle angle-averaged ver-
sion of the same”. The answer seems to be to
develop high speed new methods of line trans-
fer for doing angle-dependent PRD. This is a
challenge for the theorist, in the near future.

Figure 3 shows a comparison of approxi-
mate versus exact treatments of angle-averaged
PRD. Clearly the Stokes I and Q are insensi-
tive to the choice of RM, while the Stokes U is

considerably sensitive. We see large difference
between different treatments of PRD near the
cut-off frequency (x ≈ 3) used in approximate
treatments.

6. A simple grid refinement
procedure in PALI

It is a well known fact that solving the polar-
ized RTE on a fine optical depth mesh in an
‘isothermal slab atmosphere’ (eg. more than
10 pts/D) by PALI methods is not easy. The
difficulty stems from the basic characteristic
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Fig. 4. The advantages of the multi-stage grid
refinement procedure for solving the Hanle-
PRD problem on a highly resolved spatial grid.
The top panel represents the solution by a sin-
gle stage PALI, using a very fine grid with 10
pts/D. The lower panel represents the solution
obtained using a 5-stage grid refinement pro-
cedure. The symbols are explained in the text.
The multi-stage procedure gives the solution 3
times faster than the single stage procedure.

of the polarized source vector components -
namely the sign reversal as a function of opti-
cal depth τ− scale. The iterative methods com-
pute source vector corrections in successive it-
erations and update the polarized source vector
components using these corrections.

The MRC for the 6-component source vec-
tor and the surface polarization is

c(n)
α = max

τ,x


|δS (n)

α (τk, x)|
|S (n)
α (τk, x)|

 , (29)

where k = 1, · · · ,Nd, δS (n)
α = |S (n)

α −S (n−1)
α |, and

S
(n)
α (τk, x) = 0.5× (|S (n)

α (τk−1, x)|+ |S (n)
α (τk, x)|).

Here α denotes (K,Q)th real components of
S K

Q. For example, α = I refers to S 0
0, α = Q

to S 2
0, α = +1 to S 2(x)

1 , α = −1 to S 2(y)
1 , α = +2

to S 2(x)
2 , α = −2 to S 2(y)

2 , and finally α = P

with S (n)
α replaced by the surface polarization

P refers to eP defined in Eq. (17).
Suppose that one of the source vector com-

ponent crosses zero at depth point say, k. Then
in the denominator of Eq. (29), either one or
both the terms |S (n)

α (τk−1, x)| and |S (n)
α (τk, x)|

may tend to 0. If both of these terms tend 0,
then c(n)

α → ∞. In other words, these sign
changes lead to the iterative correction (δS/S )
in at least one of the 5 polarized components
‘growing large’, instead of ‘growing small’,
from one iteration to the next.

While this behaviour is expected in the
beginning of the PALI iterative sequence, an
occurrence of such a local instability after a
large number of iterations, namely when we
are in the smooth ‘asymptotic regime of the c(n)

α

curves’ is highly undesirable, as the conver-
gence process is unnecessarily delayed. While
the sign changes of S (n)

α (τ, x) for all α with
K = 2, is perfectly meaningful, the spikes in
the c(n)

α curves caused actually by the denom-
inator in Eq. (29) for all α with K = 2 tak-
ing very small values, do not have any physical
significance. It is simply a numerical artifact,
which however can delay the convergence of
PALI iterative cycle. This problem is especially
severe for the PRD Hanle line transfer prob-
lem in optically thick media, because there is a
much larger probability of a polarization com-
ponent undergoing ‘zero crossing’ in the (τ, x)
space for high resolution in both τ and x.

Paletou & Faurobert-Scholl (1997) have
proposed a simple grid refinement strategy,
which they employed for the resonance line
scattering problem. In this section, we have
adopted the same strategy for solving a Hanle
scattering PRD problem. This multi-stage grid
refinement strategy performs 2 processes at
each stage of τ− grid resolution :
(a) the grid doubling and searching for cross-
over points (zero-crossing points), where one
or more of the 6 source vector components
approach zero, and remove the points on the
new τ− grid which are closer to the cross-over
points. This can be done by testing if

S (n)
α (τk−1, x)S (n)

α (τk+1, x) < 0. (30)
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If true, then there exists an index k′ such
that S (n)

α (τk′ , x) → 0 in [τk−1, τk]. Moreover,
if S (n)

α (τk−1, x) → 0, it is more likely that
S (n)
α (τk, x) where τk is ‘our chosen grid point’,

approaches S (n)
α (τk′ , x). Then we encounter the

problem of c(n)
α → ∞ as explained above. To

avoid this, at least one of τk−1 or τk should be
shifted to some other grid point so that the sum

(|S (n)
α (τk−1, x)| + |S (n)

α (τk, x)|) 9 0. (31)

This process of filtering the grid points often
leads to a resolution less than actual doubling.
(b) Interpolation of the source vector computed
on the previous grid onto the new τ− grid.

Figure 4 shows the performance of this grid
refinement procedure in an isothermal self-
emitting slab. The model used is: (T, a, ε, Bν) =
(200, 10−3, 10−4, 1). The magnetic field param-
eters are (γB, ϑB, χB) = (1, 30◦, 0◦). A logarith-
mic frequency grid with Nx = 25 in the range
(0 < x < 10) is good enough for this opti-
cally thin case. An angle grid with Nµ = 5
is used. For the test case we have presented
in Fig. 4, it is possible to obtain a solution
by a single stage PALI using 10 pts/D and it
requires a CPU time of 120 seconds. To ob-
tain the same solution by a 5-stage grid refine-
ment procedure (total number of depth points
at the 5 successive stages being 23, 31, 39,
55, 79), we require only 40 seconds. We note
that sometimes it is impossible to obtain a so-
lution by a single stage PALI - as the itera-
tive sequence never converges due to the on-
set of too many zero-crossings of the polarized
source functions. This problem is acute when
we require high resolution on τ− scale, where
the polarized source vector components are al-
ready close to zero in large parts of the medium
(semi-infinite media with large values of ther-
malization parameter ε etc). The only alterna-
tive in such cases is to employ the multi-stage
grid refinement, which provides the solution on
a high resolution τ− scale, starting from quite
a low resolution. This gives a reliable and ac-
curate solution, and the final solution is ob-
tained faster than the conventional single stage
approach.

7. Practical approximations to
polarized line transfer

Polarized line transfer becomes numerically
more and more formidable when the physics of
scattering becomes involved (to give an exam-
ple, the Hanle-Zeeman RM in arbitrary fields).
Thus it becomes necessary to use the concepts
like (a) orders of scattering approximation, and
(b) last scattering approximation in exploratory
work, before embarking on the full scale prob-
lem. Here we describe these two important
concepts through their practical applications.

7.1. Orders of scattering approach

In polarized line transfer this approach works
as long as the degree of polarization remains
small.

We start from the standard integral equa-
tion for the Hanle effect with a deterministic
magnetic field, namely

S(τ; B) = G(τ)

+N̂(B)
∫ T

0
K̂(τ − τ′)S(τ′; B) dτ′, (32)

where the kernel K̂(τ) = L̂(τ; 0) (see Eq. (23)).
The azimuth angle χB can be factored out (see
Frisch et al. 2009), namely S K

Q = eiQχBSK
Q.

These new components satisfy (omitting the
dependence of S K

Q on B)

S K
Q(τ) = δK0δQ0G(τ) +

∑

K′Q′
NK

QQ′(B)

×
∫ T

0
KKK′

Q′ (τ − τ′)S K′
Q′ (τ

′)dτ′. (33)

The notation B now stands for (B, ϑB), and IK
Q

satisfies the transfer equation (9), but now re-
stricted to CRD. Clearly the equation for S 0

0
contains S 0

0 and S 2
0 only. Since, polarization is

always weak for the Hanle effect, we may ne-
glect its effect on Stokes I. We denote by

S̃ 0
0(τ) = G(τ)

+ N0
00

∫ T

0
K00

0 (τ − τ′)S̃ 0
0(τ′) dτ′, (34)

the approximate value corresponding to the ex-
act value S 0

0. As G(τ) = εBν and N0
00 = (1− ε),
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Eq. (34) takes the usual form of unpolarized
integral equation for the source function.

We now replace S 0
0 by S̃ 0

0 in the equation
for S 2

Q and obtain

S̃ 2
Q(τ) = N2

Q0(B)C2
0(τ) +

∑

Q′
N2

QQ′ (B)

×
∫ T

0
K22

Q′ (τ − τ′)S̃ 2
Q′(τ

′) dτ′, (35)

where

C2
0(τ) =

∫ +∞

−∞

1
2

∫ +1

−1
Ψ20

0 (µ) φ(x)

× Ĩ0
0 (τ, x, µ) dµ dx, (36)

with Ψ20
0 (µ) = 1

2
√

2
(3µ2 − 1). The first term in

Eq. (35) gives the dominant contribution that
drives the polarization. Therefore Eq. (35) can
be solved by the standard method of succes-
sive iterations. The zeroth order solution in this
iterative scheme is the first term of Eq. (35),
which is nothing but the single scattered con-
tribution to the source vector. Neglecting the
cross-coupling between the source vector com-
ponents of S̃ 2

Q (Q , Q′) and keeping only self
coupling (Q = Q′), we can show that S̃ 2

Q for
the kth iterate can be ‘expressed’ in the form
of a series :

[S̃ 2
Q](k) = N2

Q0(B)C2
0(τ) +

m=k∑

m=1

[
7
10

N2
QQ]m

×
∫ T

0
K̄22

Q (τ − τ1)dτ1

∫ T

0
K̄22

Q (τ1 − τ2)dτ2 . . .

×
∫ T

0
K̄22

Q (τk−1 − τk)N2
Q0(B)C2

0(τk) dτk. (37)

Here the kernels K̄22
Q = 10

7 K22
Q . From Eq. (37)

we see that [S̃ 2
Q](k) contains contribution from

all orders of scattering from k = 0 (single scat-
tering) to k + 1 times scattered photons. For
optically thin and thick cases single scattering
contribution is sufficient to correctly evaluate
the polarization (see Fig. 5b).

In optically thin media photons suffer about
one scattering and Q/I is well represented by
single scattering approximation. For very thick
lines, large number of scatterings do take place

within the medium, but the emergent polariza-
tion is produced only by the last few scatter-
ings which take place in a boundary layer at the
top of the atmosphere. For intermediate optical
thickness single scattering approximation fails
(see Fig. 5a). However actual S K

Q can be recov-
ered by including higher orders of scattering.

In astrophysical applications we encounter
resonance lines that have very large optical
depths. For such lines one more level of ap-
proximation can be introduced, namely the
Eddington-Barbier relation which is tradition-
ally used for semi-infinite medium. When ap-
plied to polarization (with positive Q parallel
to the solar limb) it takes the form

Q(0, x, µ) ' − 3

2
√

2
(1 − µ2)S̃ 2

0

(
µ

φ(x)

)
. (38)

7.2. Last scattering approximation

Another practical approximation that is simi-
lar to the single scattering approximation dis-
cussed above, is the last scattering approxima-
tion (LSA). It assumes that the emergent polar-
ization is determined by the incident radiation
field anisotropy within the atmosphere where
the last scattering takes place (in other words
the emergent polarization is produced by the
very last scattering event, rather than by multi-
ple scattering within the atmosphere). For fre-
quency coherent non-magnetic scattering, LSA
allows us to write (Stenflo 1982)

Q
I
≡ P = W2,eff kG,λ(µ) kc, (39)

where W2,eff is the effective atomic polariz-
ability factor, kc is the collisional depolar-
ization factor, and kG,λ(µ) is the anisotropy
factor. kG,λ(µ) is obtained by multiplying the
Rayleigh phase matrix with an incident unpo-
larized Stokes vector (I, 0, 0, 0)T and inte-
grating over all the incoming angles. This gives
(see Stenflo 1982)

kG,λ(µ) =
(1 − µ2)

Iλ(µ)
3
16

×
∫ +1

−1
(3µ′

2 − 1) Iλ(µ′) dµ′. (40)
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Fig. 5. Rayleigh scattering. Convergence history of the successive iteration method for the cal-
culation of Q/I for τ = 0 and µ = 0.05. Different line types are : thick solid line : exact solution
(from PALI); dotted : single scattering; dashed, dot-dashed, triple-dot dashed and long dashed :
2nd, 3rd, 4th, 5th and 6th iterations respectively. All the following iterations are plotted with thin
solid lines.

Comparing Eq. (40) with Eq. (38) where S̃ 2
0

is given by the single scattering approximation
(i.e., S̃ 2

0 = N2
00(B)C2

0), we see that for the par-
ticular case of ‘frequency coherent scattering’
(meaning in Eq. (36) we disregard integration
over frequency and set φ(x) = 1), kG,λ(µ) and
Q/I (of Eq. (38)) are the same.

LSA was first used by Stenflo (1982) to
determine the strength of the solar micro-
turbulent fields, using Hanle scattering in spec-
tral lines. Recently Sampoorna et al. (2009)
have extended the LSA concept to include
the more realistic case of PRD, in the so-
lar chromosphere, through a modelling of the
Ca  4227 Å line. The details of this method
are given in Sampoorna et al. (2009, see also
Sampoorna 2009, this volume).

Here we show an example of the model fits
obtained using LSA. Figure 6 shows the obser-
vations done in the quite regions of the Sun,
using the ZIMPOL II polarimeter at IRSOL
(Locarno, Switzerland). The model profile fits
the observed data very well in the wings. The
near wing maxima in Q/I profiles are also fit-
ted well. We can not expect the LSA to hold
good in the line core, where the monochro-
matic optical depths in the profile are so large
that the transfer effects can not be neglected.
Therefore the line core region needs a full scale
modelling using polarized line transfer.

Fig. 6. Model fit obtained for collision strength
ΓE/ΓR = 10 (solid line). The dotted line is the
observed Q/I. Note how well the observed Q/I
wings are fitted by the computed model profile.

8. Conclusions

In this paper, we show that the newly devel-
oped numerical methods of line transfer can be
very well tested by applying them to solve po-
larized line transfer problems. We have demon-
strated this through applications to benchmark
problems involving physical and numerical
complexity. Attention is also drawn to some
peculiarities of polarized transfer.
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